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Abstract 
 
An Artificial intelligence (AI) system was developed to support interpretation of pre-biopsy prostate 
multiparametric MRI (mpMRI), aiming to improve patient selection for biopsy, biopsy target 
identification, and productivity of segmentation and reporting, in the prostate cancer diagnostic 
pathway. 
 
For segmentation, the system achieved 92% average Dice score for prostate gland segmentation on 
held-out test cases from the PROMISE12 dataset (10 patients). 
 
For biopsy assessment, the system identified patients with Gleason ≥3+4 clinically significant prostate 
cancer (csPCA) with sensitivity 93% (95% CI 82-100%), specificity 76% (64-87%), NPV 95% (88-
100%), and AUC 0.92 (0.84-0.98), using biparametric MRI (bpMRI) data from the combined 
PROSTATEx development validation and test sets (80 patients). Performance on the held-out 
PROSTATEx test set (40 patients) was higher. Radiologists in major studies achieved 93% per-
patient sensitivity at specificity from 18-73%. Equivalent sensitivity is reported for comparable AI/CAD 
systems at specificity from 6%-42%. 
 
For biopsy targeting, the system identified lesions containing csPCa in the PROSTATEx blinded test 
set (208 lesions, 140 patients) with AUC 0.84/0.85 with bpMRI/mpMRI data respectively. 
 
The AI system shows promising performance compared to radiologists and the literature. Further 
development, regulatory approvals, and evaluation with larger, multi-centre datasets are now planned. 
 

 

Background 

While pre-biopsy multiparametric magnetic resonance imaging (mpMRI) substantially improves 
detection of clinically significant prostate cancer (csPCa) and reduces unnecessary biopsies and 
diagnoses of insignificant cancer, there remain ongoing challenges with underdiagnosis, biopsy rates, 
and overdiagnosis. Major studies indicate that 21-49% of patients may still undergo a potentially 
avoidable biopsy [Ahmed 2020, Kasivisvanathan 2018, Rouvière 2019, van der Leest 2019], and up 
to 12% of csPCa may be missed [Drost 2019]. 

AI has the potential to support clinical interpretation and improve accuracy of pre-biopsy MRI for 
prostate cancer to address these concerns, and could also help improve productivity. We compare a 
new artificial intelligence (AI) based system for detecting Gleason ≥3+4 csPCa using MRI, with human 
readers and existing computer aided diagnosis (CAD) literature. 

Methods 

An AI diagnostic aid for prostate cancer detection was developed using a multi-stage architecture 
designed to produce three outputs: prostate segmentation, for PSA density estimation and fusion 
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biopsy; cancer risk calculation, to help reduce unnecessary biopsies; and lesion identification, to 
support biopsy targeting. 

Data was obtained from open, anonymised prostate MRI datasets, and divided into training, 
development validation, and held-out test sets. Held-out test data was not used in model training or 
optimisation. Segmentation models were trained on axial T2 weighted imaging (T2WI) MRI data and 
accompanying prostate annotations from the PROMISE12 and NCI-ISBI 2013 Challenge datasets 
[Litjens 2014a, Bloch 2015], acquired using a variety of 1.5T and 3T scanners. Models for cancer 
assessment (risk calculation and lesion identification) were trained on PROSTATEx [Litjens 2014b], a 
mpMRI dataset acquired at one centre on two 3T scanners (Siemens MAGNETOM Trio and Skyra), 
with histopathology findings from MR-guided biopsy as ground truth. 

Because some centres acquire bpMRI sequences only, two cancer assessment models were trained 
and evaluated on the PROSTATEx dataset, one using axial bpMRI data only, and a second using 
axial mpMRI data. bpMRI comprised b1400 diffusion-weighted imaging (DWI) and apparent diffusion 
coefficient (ADC) sequences computed by the scanner software, and T2WI. mpMRI additionally 
includes dynamic contrast-enhanced (DCE) axial T1 weighted sequences captured following injection 
of a gadolinium-based contrast agent. 

Performance was evaluated after model development was completed. For prostate gland 
segmentation using axial T2WI, the Dice coefficient was calculated using held-out test cases from the 
PROMISE12 dataset. 

The calculated risk scores were assessed for patient selection for biopsy by estimating per-patient 
sensitivity, specificity, and negative predictive value (NPV), all at optimum NPV, and receiver 
operating characteristic area under curve (AUC), with bootstrapped 95% confidence intervals, using 
the development validation and held-out test sets from the PROSTATEx dataset. 

For lesion identification, submission was made to the PROSTATEx Grand Challenge, which evaluates 
AUC only for blinded test cases in the PROSTATEx dataset [Litjens 2014b]. In addition, per-lesion 
sensitivity, specificity, NPV and AUC were evaluated using the development validation and held-out 
test sets from the PROSTATEx dataset. 

Results 

The system achieved 92% average Dice score for prostate gland segmentation when compared with 
the benchmark examples from the PROMISE12 [Litjens 2014a] held-out test set (10 patients). 

For the task of selecting patients with csPCA for biopsy, radiologists achieved per-patient sensitivity of 
88%/93%/94% and specificity 45%/18%/73% respectively in three major studies [Ahmed 2018, 
Rouvière 2019, van der Leest 2019]. Comparable AI/CAD publications report 93% sensitivity using 
held-out test data at specificity ranging from 6% [Thon 2017] to 42% [Schelb 2020].  

The AI system had per-patient sensitivity 93% (95% CI 82-100%), specificity 76% (64-87%), NPV 
95% (88-100%), and AUC 0.92 (0.84-0.98), evaluated using bpMRI data from the combined 
PROSTATEx development validation and test sets (128 lesions, 80 patients). The mpMRI model 
performed similarly on the same data, with sensitivity 93% (83%-100%), specificity 78% (65-88%), 
NPV 95% (89-100%), and AUC 0.91 (0.84-0.97). On the PROSTATEx held-out test set (64 lesions, 
40 patients) both models had higher performance, per-patient and per-lesion. 

For identifying biopsy targets, the AI system detected lesions containing csPCa in the blinded 
PROSTATEx Grand Challenge test set (208 lesions, 140 patients) with AUC 0.84/0.85 with 
bpMRI/mpMRI data. In the combined PROSTATEx development validation and test sets (128 lesions, 
80 patients), the bpMRI/mpMRI models had per-lesion sensitivity 94% (85-100%)/94% (85-100%), 
specificity 71% (61-89%)/69% (59-78%), NPV 97% (93-100%)/97% (93-100%), and AUC 0.89 (0.83-
0.95)/0.90 (0.84-0.95). The blinded Grand Challenge test set appears to contain several extra-
prostatic lesions that the model does not identify, and this may account for differences in performance 
between these test sets. 

Conclusion 

The AI system’s performance is in line with central reporting by expert radiologists, providing a 
preliminary indication that it could be used to support accurate assessment and reporting of pre-
biopsy MRI for prostate cancer. The system processes axial data only, enabling its use with 
abbreviated protocols. Similar performance with both bpMRI and mpMRI data suggests a potential 



application to support reduction or avoidance of contrast agent sequences. Its accuracy appears to 
exceed published results for similar prostate CAD/AI systems. Methodological and dataset differences 
and small test set sizes limit these comparisons. Improved detection of extra-prostatic lesions, 
workflow integration, training and evaluation with larger, more diverse datasets, and prospective 
studies are recommended to evaluate this and related detection tasks further. 

Impact 

Artificial intelligence-based software could support exclusion of clinically significant prostate cancer 
with high NPV and AUC, assist with the identification of lesions to target for biopsy, and may facilitate 
avoidance of gadolinium-based contrast agents or use of faster MRI protocols.  
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